685 research outputs found

    Automated search for galactic star clusters in large multiband surveys: I. Discovery of 15 new open clusters in the Galactic anticenter region

    Get PDF
    Aims: According to some estimations, there are as many as 100000 open clusters in the Galaxy, but less than 2000 of them have been discovered, measured, and cataloged. We plan to undertake data mining of multiwavelength surveys to find new star clusters. Methods: We have developed a new method to search automatically for star clusters in very large stellar catalogs, which is based on convolution with density functions. We have applied this method to a subset of the Two Micron All Sky Survey catalog toward the Galactic anticenter. We also developed a method to verify whether detected stellar groups are real star clusters, which tests whether the stars that form the spatial density peak also fall onto a single isochrone in the color-magnitude diagram. By fitting an isochrone to the data, we estimate at the same time the main physical parameters of a cluster: age, distance, color excess. Results: For the present paper, we carried out a detailed analysis of 88 overdensity peaks detected in a field of 16×1616\times16 degrees near the Galactic anticenter. From this analysis, 15 overdensities were confirmed to be new open clusters and the physical and structural parameters were determined for 12 of them; 10 of them were previously suspected to be open clusters by Kronberger (2006) and Froebrich (2007). The properties were also determined for 13 yet-unstudied known open clusters, thus almost tripling the sample of open clusters with studied parameters in the anticenter. The parameters determined with this method showed a good agreement with published data for a set of well-known clusters.Comment: accepted to A&

    Automated search for star clusters in large multiband surveys: II. Discovery and investigation of open clusters in the Galactic plane

    Get PDF
    Automated search for star clusters in J,H,K_s data from 2MASS catalog has been performed using the method developed by Koposov et. al (2008). We have found and verified 153 new clusters in the interval of the galactic latitude -24 < b < 24 degrees. Color excesses E(B-V), distance moduli and ages were determined for 130 new and 14 yet-unstudied known clusters. In this paper, we publish a catalog of coordinates, diameters, and main parameters of all the clusters under study. A special web-site available at http://ocl.sai.msu.ru has been developed to facilitate dissemination and scientific usage of the results.Comment: 9 pages, 3 tables, 5 figures, accepted to Astronomy Letter

    Ages and abundances in large-scale stellar disks of nearby S0 galaxies

    Get PDF
    By undertaking deep long-slit spectroscopy with the focal reducer SCORPIO of the Russian 6m telescope, we studied stellar population properties and their variation with radius in 15 nearby S0 galaxies sampling a wide range of luminosities and environments. For the large-scale stellar disks of S0s, we have measured SSP-equivalent metallicities ranging from the solar one down to [Z/H]=-0.4 - -0.7, rather high magnesium-to-iron ratios, [Mg/Fe] > +0.2, and mostly old SSP-equivalent ages. Nine of 15 (60%) galaxies have large-scale stellar disks older than 10 Gyr, and among those we find all the galaxies which reside in denser environments. The isolated galaxies may have intermediate-age stellar disks which are 7-9 Gyr old. Only two galaxies of our sample, NGC 4111 and NGC 7332, reveal SSP-equivalent ages of their disks of 2-3 Gyrs. Just these two young disks appear to be thin, while the other, older disks have scale heights typical for thick stellar disks. The stellar populations in the bulges at radii of 0.5r_eff are on the contrary more metal-rich than the solar metallicity, with the ages homogeneously distributed between 2 and 15 Gyr, being almost always younger than the disks. We conclude that S0 galaxies could not form in groups at z=0.4 as is thought now; a new scenario of the general evolution of disk galaxies is proposed instead.Comment: Accepted to the MNRA

    About specialities of numerical estimation of smoothing parameter of probability density functions of random sequences in Parzen-Rosenblatt approximation

    Full text link
    The methods of nonparametric statistics are very useful in data analysis. One of the most popular methods is called Parzen-Rosenblatt approximation. This method turns out to be effective, for example, in a problem of estimation of longevity of pipelines or in the analysis of the statistical characteristics of traffic flows. This paper discusses the recommendations for application of a method, which was performed by Parzen and Rosenblatt, in a problem of recovering a probability density function from a sample of random data with a bounded scattering region. It was shown that there are some difficulties during calculation of information functional. This paper gives an explanation of causes which lead to a nonmonotonicity of an information functional and which are based on a finite precision of computer calculations. It was proved a choice of initial value of smoothing parameter for different kernel types and was proposed an algorithm for finding a maximal value of information functional. © Published under licence by IOP Publishing Ltd

    Chemodynamic subpopulations of the Carina dwarf galaxy

    Get PDF
    We study the chemodynamical properties of the Carina dwarf spheroidal by combining an intermediate spectroscopic resolution dataset of more than 900 red giant and red clump stars, with high-precision photometry to derive the atmospheric parameters, metallicities and age estimates for our targets. Within the red giant branch population, we find evidence for the presence of three distinct stellar sub-populations with different metallicities, spatial distributions, kinematics and ages. As in the Fornax and Sculptor dwarf spheroidals, the subpopulation with the lowest average metallicity is more extended and kinematically hotter than all other populations. However, we identify an inversion in the parallel ordering of metallicity, kinematics and characteristic length scale in the two most metal rich subpopulations, which therefore do not contribute to a global negative chemical gradient. Contrary to common trends in the chemical properties with radius, the metal richest population is more extended and mildly kinematically hotter than the main component of intermediate metallicity. More investigations are required to ascertain the nature of this inversion, but we comment on the mechanisms that might have caused it.Comment: 9 pages, 9 figures, accepted for publication in MNRA

    Nine tiny star clusters in Gaia DR1, PS1 and DES

    Get PDF
    We present the results of a systematic Milky Way satellite search performed across an array of publicly available wide-area photometric surveys. Our aim is to complement previous searches by widening the parameter space covered. Specifically, we focus on objects smaller than 11' and include old, young, metal poor and metal rich stellar population masks. As a result we find 9 new likely genuine stellar systems in data from GAIA, DES, and Pan-STARRS, which were picked from the candidate list because of conspicuous counterparts in the cut-out images. The presented systems are all very compact (rh<1r_h<1') and faint (MV3M_V\gtrsim-3), and are associated either with the Galactic disk, or the Magellanic Clouds. While most of the stellar systems look like Open Clusters, their exact classification is, as of today, unclear. With these discoveries, we extend the parameter space occupied by star clusters to sizes and luminosities previously unexplored and demonstrate that rather than two distinct classes of Globular and Open clusters, there appears to be a continuity of objects, unmarked by a clear decision boundary.Comment: 17 pages, 13 figures, accepted in MNRAS. v1 submitted version; v2 accepted Versio

    Gaia 1 and 2. A pair of new Galactic star clusters

    Get PDF
    We present the results of the very first search for faint Milky Way satellites in the Gaia data. Using stellar positions only, we are able to re-discover objects detected in much deeper data as recently as the last couple of years. While we do not identify new prominent ultra-faint dwarf galaxies, we report the discovery of two new star clusters, Gaia 1 and Gaia 2. Gaia 1 is particularly curious, as it is a massive (2.2×\times104^4 M_\odot), large (\sim9 pc) and nearby (4.6 kpc) cluster, situated 10' away from the brightest star on the sky, Sirius! Even though this satellite is detected at significance in excess of 10, it was missed by previous sky surveys. We conclude that Gaia possesses powerful and unique capabilities for satellite detection thanks to its unrivalled angular resolution and highly efficient object classification.Comment: 9 pages, accepted to MNRA

    Leo V: A Companion of a Companion of the Milky Way Galaxy

    Get PDF
    We report the discovery of a new Milky Way dwarf spheroidal galaxy in the constellation of Leo identified in data from the Sloan Digital Sky Survey. Leo V lies at a distance of about 180 kpc, and is separated by about 3 degrees from another recent discovery, Leo IV. We present follow-up imaging from the Isaac Newton Telescope and spectroscopy from the Hectochelle fiber spectrograph at the Multiple Mirror Telescope. Leo V's heliocentric velocity is 173.4 km/s, which is offset by about 40 km/s from that of Leo IV. A simple interpretation of the kinematic data is that both objects may lie on the same stream, though the implied orbit is only modestly eccentric (e = 0.2)Comment: Submitted to ApJ (Letters

    The star formation history of the Sagittarius stream

    Get PDF
    We present the first detailed quantitative study of the stellar populations of the Sagittarius (Sgr) streams within the Stripe 82 region, using photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS). The star formation history (SFH) is determined separately for the bright and faint Sgr streams, to establish whether both components consist of a similar stellar population mix or have a distinct origin. Best fit SFH solutions are characterised by a well-defined, tight sequence in age-metallicity space, indicating that star formation occurred within a well-mixed, homogeneously enriched medium. Star formation rates dropped sharply at an age of ~5-7 Gyr, possibly related to the accretion of Sgr by the MW. Finally, the Sgr sequence displays a change of slope in age-metallicity space at an age between 11-13 Gyr consistent with the Sgr alpha-element knee, indicating that supernovae type Ia started contributing to the abundance pattern ~1-3 Gyr after the start of star formation. Results for both streams are consistent with being drawn from the parent Sgr population mix, but at different epochs. The SFH of the bright stream starts from old, metal-poor populations and extends to a metallicity of [Fe/H]~-0.7, with peaks at ~7 and 11 Gyr. The faint SFH samples the older, more metal-poor part of the Sgr sequence, with a peak at ancient ages and stars mostly with [Fe/H]9 Gyr. Therefore, we argue in favour of a scenario where the faint stream consists of material stripped i) earlier, and ii) from the outskirts of the Sgr dwarf.Comment: 15 pages, 12 figures. ccepted for publication in MNRA
    corecore